Robust Subspace Clustering via Thresholding

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Subspace Clustering via Thresholding Ridge Regression

In this material, we provide the theoretical analyses to show that the trivial coefficients always correspond to the codes over errors. Lemmas 1–3 show that our errors-removing strategy will perform well when the lp-norm is enforced over the representation, where p = {1, 2,∞}. Let x 6= 0 be a data point in the union of subspaces SD that is spanned by D = [Dx D−x], where Dx and D−x consist of th...

متن کامل

Learning Robust Subspace Clustering

We propose a low-rank transformation-learning framework to robustify subspace clustering. Many high-dimensional data, such as face images and motion sequences, lie in a union of low-dimensional subspaces. The subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to their underlying low-dimensional subspaces....

متن کامل

Robust Subspace Clustering

Subspace clustering refers to the task of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This paper introduces an algorithm inspired by sparse subspace clustering (SSC) [25] to cluster noisy data, and develops some novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric functional analysi...

متن کامل

Subspace Clustering with Irrelevant Features via Robust Dantzig Selector

This paper considers the subspace clustering problem where the data contains irrelevant or corrupted features. We propose a method termed “robust Dantzig selector” which can successfully identify the clustering structure even with the presence of irrelevant features. The idea is simple yet powerful: we replace the inner product by its robust counterpart, which is insensitive to the irrelevant f...

متن کامل

Robust Regression via Hard Thresholding

We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X ∈ Rp×n and an underlying model w∗, the response vector is generated as y = XTw∗+b where b ∈ R is the corruption vector supported over at most C ·n coordinates. Existing exact recovery results for RLSR focus solely on L1-penalty ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2015

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2015.2472520